Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.240
Filtrar
1.
J Nanobiotechnology ; 22(1): 227, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711078

RESUMEN

BACKGROUND: Elevated interstitial fluid pressure within tumors, resulting from impaired lymphatic drainage, constitutes a critical barrier to effective drug penetration and therapeutic outcomes. RESULTS: In this study, based on the photosynthetic characteristics of algae, an active drug carrier (CP@ICG) derived from Chlorella pyrenoidosa (CP) was designed and constructed. Leveraging the hypoxia tropism and phototropism exhibited by CP, we achieved targeted transport of the carrier to tumor sites. Additionally, dual near-infrared (NIR) irradiation at the tumor site facilitated photosynthesis in CP, enabling the breakdown of excessive intratumoral interstitial fluid by generating oxygen from water decomposition. This process effectively reduced the interstitial pressure, thereby promoting enhanced perfusion of blood into the tumor, significantly improving deep-seated penetration of chemotherapeutic agents, and alleviating tumor hypoxia. CONCLUSIONS: CP@ICG demonstrated a combined effect of photothermal/photodynamic/starvation therapy, exhibiting excellent in vitro/in vivo anti-tumor efficacy and favorable biocompatibility. This work provides a scientific foundation for the application of microbial-enhanced intratumoral drug delivery and tumor therapy.


Asunto(s)
Chlorella , Portadores de Fármacos , Fotosíntesis , Animales , Ratones , Línea Celular Tumoral , Portadores de Fármacos/química , Humanos , Terapia Combinada , Fotoquimioterapia/métodos , Neoplasias/terapia , Antineoplásicos/farmacología , Ratones Endogámicos BALB C , Sistemas de Liberación de Medicamentos/métodos , Verde de Indocianina/farmacocinética , Verde de Indocianina/química , Femenino
2.
Bioresour Technol ; 401: 130714, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641299

RESUMEN

This study established and investigated continuous macular pigment (MP) production with a lutein (L):zeaxanthin (Z) ratio of 4-5:1 by an MP-rich Chlorella sp. CN6 mutant strain in a continuous microalgal culture module. Chlorella sp. CN6 was cultured in a four-stage module for 10 days. The microalgal culture volume increased to 200 L in the first stage (6 days). Biomass productivity increased to 0.931 g/L/day with continuous indoor white light irradiation during the second stage (3 days). MP content effectively increased to 8.29 mg/g upon continuous, indoor white light and blue light-emitting diode irradiation in the third stage (1 day), and the microalgal biomass and MP concentrations were 8.88 g/L and 73.6 mg/L in the fourth stage, respectively. Using a two-step MP extraction process, 80 % of the MP was recovered with a high purity of 93 %, and its L:Z ratio was 4-5:1.


Asunto(s)
Biomasa , Chlorella , Pigmento Macular , Microalgas , Microalgas/metabolismo , Chlorella/metabolismo , Chlorella/crecimiento & desarrollo , Pigmento Macular/metabolismo , Luteína/metabolismo , Luz , Técnicas de Cultivo de Célula/métodos , Zeaxantinas/metabolismo , Xantófilas/metabolismo
3.
Bioprocess Biosyst Eng ; 47(5): 725-736, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582779

RESUMEN

The global energy crisis has spurred a shift from conventional to clean and sustainable energy sources. Biomass derived from microalgae is emerging as an alternative energy source with diverse applications. Despite the numerous advantages of microalgae, large-scale biomass harvesting is not economical and convenient. Self-flocculation is considered an effective phenomenon facilitated by extracting the flocculating substances from microalgae that assist aggregation of algal cells into flocs. A novel cellulose-based bioflocculant has been synthesized from sewage water grown Chlorella sorokiniana and Scenedesmus abundans for harvesting application. The produced bioflocculant amounted to 38.5% and 19.38% of the dry weight of S. abundans and C. sorokiniana, respectively. Analysis via FTIR, XRD, and FESEM-EDX revealed the presence of cellulose hydroxyapatite (HA) in algae-derived cellulose. Harvesting efficiencies of 95.3% and 89.16% were attained for S. abundans and C. sorokiniana, respectively, at a dosage of 0.5 g/L. Furthermore, the bioflocculant was recovered, enabling its reuse with recovery efficiencies of 52% and 10% for S. abundans and C. sorokiniana, respectively. This simple and efficient approach has the potential to replace other harvesting methods, thereby contributing to the economic algal biofuel production.


Asunto(s)
Celulosa , Chlorella , Floculación , Scenedesmus , Aguas del Alcantarillado , Chlorella/crecimiento & desarrollo , Chlorella/metabolismo , Scenedesmus/crecimiento & desarrollo , Scenedesmus/metabolismo , Celulosa/química , Biomasa , Microalgas/crecimiento & desarrollo , Microalgas/metabolismo
4.
J Hazard Mater ; 470: 134241, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38608594

RESUMEN

Artemisinin, a novel plant allelochemical, has attracted attention for its potential selective inhibitory effects on algae, yet to be fully explored. This study compares the sensitivity and action targets of Microcystis aeruginosa (M. aeruginosa) and Chlorella pyrenoidosa (C. pyrenoidosa) to artemisinin algaecide (AMA), highlighting their differences. Results indicate that at high concentrations, AMA displaces the natural PQ at the QB binding site within M. aeruginosa photosynthetic system, impairing the D1 protein repair function. Furthermore, AMA disrupts electron transfer from reduced ferredoxin (Fd) to NADP+ by interfering with the iron-sulfur clusters in the ferredoxin-NADP+ reductases (FNR) domain of Fd. Moreover, significant reactive oxygen species (ROS) accumulation triggers oxidative stress and interrupts the tricarboxylic acid cycle, hindering energy acquisition. Notably, AMA suppresses arginine synthesis in M. aeruginosa, leading to reduced microcystins (MCs) release. Conversely, C. pyrenoidosa counters ROS accumulation via photosynthesis protection, antioxidant defenses, and by regulating intracellular osmotic pressure, accelerating damaged protein degradation, and effectively repairing DNA for cellular detoxification. Additionally, AMA stimulates the expression of DNA replication-related genes, facilitating cell proliferation. Our finding offer a unique approach for selectively eradicating cyanobacteria while preserving beneficial algae, and shed new light on employing eco-friendly algicides with high specificity.


Asunto(s)
Artemisininas , Chlorella , Microcystis , Fotosíntesis , Especies Reactivas de Oxígeno , Microcystis/efectos de los fármacos , Microcystis/metabolismo , Chlorella/efectos de los fármacos , Chlorella/metabolismo , Artemisininas/farmacología , Fotosíntesis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Microcistinas/metabolismo
5.
Sci Rep ; 14(1): 8564, 2024 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609438

RESUMEN

The present study investigated the difference in transmittance of light carrying opposite spin angular momentum (SAM) and orbital angular momentum (OAM) through chlorella algal fluid with varying concentrations and thicknesses. Our results indicate that, under specific conditions, right-handed light sources exhibit higher transmittance in the algal fluid compared to left-handed light sources. Furthermore, we observed that light with OAM also demonstrated higher transmittance than other types of light sources, leading to faster cell density growth of Chlorella. Interestingly, we also discovered that light with OAM stimulates Chlorella to synthesize more proteins. These findings provide different insights for selecting appropriate light sources for large-scale algae cultivation, and may facilitate the realization of carbon peaking and carbon neutrality in the future.


Asunto(s)
Chlorella , Proliferación Celular , Carbono , Ciclo Celular , Mano
6.
J Hazard Mater ; 470: 134279, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38613960

RESUMEN

The application of antibiotics in freshwater aquaculture leads to increased contamination of aquatic environments. However, limited information is available on the co-metabolic biodegradation of antibiotics by microalgae in aquaculture. Feedstuffs provide multiple organic substrates for microalgae-mediated co-metabolism. Herein, we investigated the co-metabolism of sulfamethoxazole (SMX) by Chlorella pyrenoidosa when adding main components of feedstuff (glucose and lysine). Results showed that lysine had an approximately 1.5-fold stronger enhancement on microalgae-mediated co-metabolism of SMX than glucose, with the highest removal rate (68.77% ± 0.50%) observed in the 9-mM-Lys co-metabolic system. Furthermore, we incorporated reactive sites predicted by density functional theory calculations, 14 co-metabolites identified by mass spectrometry, and the roles of 18 significantly activated enzymes to reveal the catalytic reaction mechanisms underlying the microalgae-mediated co-metabolism of SMX. In lysine- and glucose-treated groups, five similar co-metabolic pathways were proposed, including bond breaking on the nucleophilic sulfur atom, ring cleavage and hydroxylation at multiple free radical reaction sites, together with acylation and glutamyl conjugation on electrophilic nitrogen atoms. Cytochrome P450, serine hydrolase, and peroxidase play crucial roles in catalyzing hydroxylation, bond breaking, and ring cleavage of SMX. These findings provide theoretical support for better utilization of microalgae-driven co-metabolism to reduce sulfonamide antibiotic residues in aquaculture.


Asunto(s)
Acuicultura , Chlorella , Glucosa , Microalgas , Sulfametoxazol , Contaminantes Químicos del Agua , Sulfametoxazol/metabolismo , Sulfametoxazol/química , Microalgas/metabolismo , Chlorella/metabolismo , Glucosa/metabolismo , Contaminantes Químicos del Agua/metabolismo , Lisina/metabolismo , Lisina/química , Biodegradación Ambiental , Redes y Vías Metabólicas , Antibacterianos/metabolismo , Antibacterianos/química
7.
Arch Microbiol ; 206(5): 218, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38625565

RESUMEN

There is a great scientific curiosity to discover all environments sheltering microalgae, especially those with exceptional characteristics from coldest to hottest ones, the purpose remains to explore the potential of the native microalgae flora and the research for new bioactive compounds. This study aimed to isolate a polysaccharide-producing microalga from an extreme ecosystem and to evaluate its capacity to inhibit the α-D-glucosidase enzyme. Chlorella strain is isolated from hypersaline Lake in the Algerian desert. The exopolysaccharide extraction was performed by the concentration of free-cell supernatant in a rotary evaporator. The infrared analysis showed a characteristic footprint of carbohydrates with particular functional groups, such as sulfate. Gas chromatography-mass spectrometry has revealed a hetero-exopolysaccharide composed of galactose 35.75%, glucose 21.13%, xylose 16.81%, fructose 6.96%, arabinose 5.10%, and glucuronic acid 2.68%. The evaluation of the anti-hyperglycemic activity demonstrated a significant α-D-glucosidase inhibition of 80.94 ± 0.01% at 10 mg mL-1 with IC50 equal to 4.31 ± 0.20 mg mL-1. This study opens a vast prospect to use exopolysaccharides as natural nutraceutical or food additive.


Asunto(s)
Chlorella , Sulfatos , Ecosistema , Arabinosa , Glucosidasas
8.
BMC Genomics ; 25(1): 356, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600443

RESUMEN

BACKGROUND: Centromeres play a crucial and conserved role in cell division, although their composition and evolutionary history in green algae, the evolutionary ancestors of land plants, remains largely unknown. RESULTS: We constructed near telomere-to-telomere (T2T) assemblies for two Trebouxiophyceae species, Chlorella sorokiniana NS4-2 and Chlorella pyrenoidosa DBH, with chromosome numbers of 12 and 13, and genome sizes of 58.11 Mb and 53.41 Mb, respectively. We identified and validated their centromere sequences using CENH3 ChIP-seq and found that, similar to humans and higher plants, the centromeric CENH3 signals of green algae display a pattern of hypomethylation. Interestingly, the centromeres of both species largely comprised transposable elements, although they differed significantly in their composition. Species within the Chlorella genus display a more diverse centromere composition, with major constituents including members of the LTR/Copia, LINE/L1, and LINE/RTEX families. This is in contrast to green algae including Chlamydomonas reinhardtii, Coccomyxa subellipsoidea, and Chromochloris zofingiensis, in which centromere composition instead has a pronounced single-element composition. Moreover, we observed significant differences in the composition and structure of centromeres among chromosomes with strong collinearity within the Chlorella genus, suggesting that centromeric sequence evolves more rapidly than sequence in non-centromeric regions. CONCLUSIONS: This study not only provides high-quality genome data for comparative genomics of green algae but gives insight into the composition and evolutionary history of centromeres in early plants, laying an important foundation for further research on their evolution.


Asunto(s)
Chlorella , Humanos , Chlorella/genética , Centrómero/genética , Plantas/genética , Elementos Transponibles de ADN , Telómero/genética
9.
J Environ Manage ; 357: 120723, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38565028

RESUMEN

Due to increased pesticide usage in agriculture, a significant concentration of pesticides is reported in the environment that can directly impact humans, aquatic flora, and fauna. Utilizing microalgae-based systems for pesticide removal is becoming more popular because of their environmentally friendly nature, ability to degrade pesticide molecules into simpler, nontoxic molecules, and cost-effectiveness of the technology. Thus, this review focused on the efficiency, mechanisms, and factors governing pesticide removal using microalgae-based systems and their effect on microalgal metabolism. A wide range of pesticides, like atrazine, cypermethrin, malathion, trichlorfon, thiacloprid, etc., can be effectively removed by different microalgal strains. Some species of Chlorella, Chlamydomonas, Scenedesmus, Nostoc, etc., are documented for >90% removal of different pesticides, mainly through the biodegradation mechanism. The antioxidant enzymes such as ascorbate peroxidase, superoxide dismutase, and catalase, as well as the complex structure of microalgae cell walls, are mainly involved in eliminating pesticides and are also crucial for the defense mechanism of microalgae against reactive oxygen species. However, higher pesticide concentrations may alter the biochemical composition and gene expression associated with microalgal growth and metabolism, which may vary depending on the type of strain, the pesticide type, and the concentration. The final section of this review discussed the challenges and prospects of how microalgae can become a successful tool to remediate pesticides.


Asunto(s)
Chlorella , Microalgas , Plaguicidas , Contaminantes Químicos del Agua , Humanos , Plaguicidas/química , Microalgas/metabolismo , Contaminantes Químicos del Agua/química , Malatión/metabolismo , Malatión/farmacología
10.
PLoS Biol ; 22(4): e3002563, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38573881

RESUMEN

Exploring the mechanisms that underpin symbiosis requires an understanding of how these complex interactions are maintained in diverse model systems. The ciliate protist, Paramecium bursaria, offers a valuable insight into how emergent endosymbiotic interactions have evolved.


Asunto(s)
Chlorella , Cilióforos , Paramecium , Simbiosis
11.
Artículo en Inglés | MEDLINE | ID: mdl-38643813

RESUMEN

Antibiotics are ubiquitously present in aquatic environments, posing a serious ecological risk to aquatic ecosystems. However, the effects of antibiotics on the photosynthetic light reactions of freshwater algae and the underlying mechanisms are relatively less understood. In this study, the effects of 4 representative antibiotics (clarithromycin, enrofloxacin, tetracycline, and sulfamethazine) on a freshwater alga (Chlorella pyrenoidosa) and the associated mechanisms, primarily focusing on key regulators of the photosynthetic light reactions, were evaluated. Algae were exposed to different concentrations of clarithromycin (0.0-0.3 mg/L), enrofloxacin (0.0-30.0 mg/L), tetracycline (0.0-10.0 mg/L), and sulfamethazine (0.0-50.0 mg/L) for 7 days. The results showed that the 4 antibiotics inhibited the growth, the photosynthetic pigment contents, and the activity of antioxidant enzymes. In addition, exposure to clarithromycin caused a 118.4 % increase in malondialdehyde (MDA) levels at 0.3 mg/L. Furthermore, the transcripts of genes for the adenosine triphosphate (ATP) - dependent chloroplast proteases (ftsH and clpP), genes in photosystem II (psbA, psbB, and psbC), genes related to ATP synthase (atpA, atpB, and atpH), and petA (related to cytochrome b6/f complex) were altered by clarithromycin. This study contributes to a better understanding of the risk of antibiotics on primary producers in aquatic environment.


Asunto(s)
Antibacterianos , Chlorella , Fotosíntesis , Contaminantes Químicos del Agua , Chlorella/efectos de los fármacos , Chlorella/metabolismo , Fotosíntesis/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Tetraciclina/farmacología , Tetraciclina/toxicidad , Claritromicina/farmacología , Enrofloxacina/farmacología , Enrofloxacina/toxicidad , Sulfametazina/toxicidad , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/efectos de los fármacos , Luz , Clorofila/metabolismo
12.
Environ Pollut ; 349: 123881, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38580063

RESUMEN

Microalgae and macrophytes are commonly used as human and animal food supplements. We examined the cultivation of the microalgae Chlorella sorokiniana and the duckweed Lemna minor in thermal waters under batch and sequencing batch conditions and we characterized the produced biomass for the presence of essential nutrients as well as for heavy metals and radioisotope content. The highest specific growth rate for the microalgae was observed when 5 or 15 mg/L N were supplemented while the optimal conditions for Lemna minor were observed in the co-presence of 5 mg/L N and 1.7 mg/L P. Lemna minor presented higher concentrations of proteins and lipids comparing to the studied microalgae. Both organisms contained high amounts of lutein (up to 1378 mg/kg for Lemna minor) and chlorophyll (up to 1518 mg/kg for Lemna minor) while ß-carotene and tocopherols were found at lower concentrations, not exceeding a few tens of mg/kg. The heavy metal content varied between the two species. Lemna minor accumulated more Cd, Cu, K, Mn, Na, Ni, and Zn whereas Al, Ca and Mg were higher in Chlorella sorokiniana. Both organisms could be a significant source of essential metals but the occasional exceedance of the statutory levels of toxic metals in food products raises concern for potential risk to either humans or animals. Application of gamma-spectroscopy to quantify the effective dose to humans from 228Ra, 226Ra and 40K showed that Chlorella sorokiniana was well under the radiological limits while the collected mass of Lemna minor was too small for radiological measurements with confidence.


Asunto(s)
Araceae , Biomasa , Chlorella , Metales Pesados , Microalgas , Radioisótopos , Metales Pesados/análisis , Metales Pesados/metabolismo , Chlorella/crecimiento & desarrollo , Chlorella/metabolismo , Araceae/metabolismo , Microalgas/metabolismo , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/análisis , Clorofila/metabolismo
13.
Bioresour Technol ; 400: 130651, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38570100

RESUMEN

Excessive proliferation of algae in water depletes dissolved oxygen, resulting in the demise of aquatic life and environmental damage. This study delves into the effectiveness of the dielectric barrier discharge (DBD) plasma activated peracetic acid (PAA) system in deactivating Chlorella. Within 15 min, the algae removal effectiveness reached 89 % under ideal trial conditions. DBD plasma activation of PAA augmented the concentration of reactive species such as ·OH, 1O2, and organic radicals (RO·) in the solution, which are involved in the process of cell inactivation. Reactive oxygen species (ROS) within Chlorella cells continued to rise as a result of treatment-induced damage to the morphological structure and cell membrane of the organism. DNA and chlorophyll-a (Chl-a), were oxidized and destroyed by these invasive active compounds. This study presents an efficient advanced oxidation method to destroy algal cells and adds an alternative strategy for algal control in areas where eutrophication occurs.


Asunto(s)
Chlorella , Ácido Peracético , Gases em Plasma , Especies Reactivas de Oxígeno , Chlorella/metabolismo , Chlorella/efectos de los fármacos , Ácido Peracético/farmacología , Gases em Plasma/farmacología , Especies Reactivas de Oxígeno/metabolismo , Clorofila/metabolismo , Clorofila A/metabolismo
14.
Bioresour Technol ; 400: 130668, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583677

RESUMEN

This study examined the removal of typical antibiotics from simulated swine wastewater. Microalgae-bacteria/fungi symbioses were constructed using Chlorella ellipsoidea, endophytic bacteria (S395-2), and Clonostachys rosea as biomaterials. The growth, photosynthetic performance, and removal of three types of antibiotics (tetracyclines, sulfonamides, and quinolones) induced by four phytohormones were analyzed in each system. The results showed that all four phytohormones effectively improved the tolerance of symbiotic strains against antibiotic stress; strigolactones (GR24) achieved the best performance. At 10-9 M, GR24 achieved the best removal of antibiotics by C. elliptica + S395-2 + C. rosea symbiosis. The average removals of tetracycline, sulfonamide, and quinolone by this system reached 96.2-99.4 %, 75.2-81.1 %, and 66.8-69.9 %, respectively. The results of this study help to develop appropriate bio enhancement strategies as well as design and operate algal-bacterial-fungal symbiotic processes for the treatment of antibiotics-containing wastewater.


Asunto(s)
Antibacterianos , Microalgas , Reguladores del Crecimiento de las Plantas , Aguas Residuales , Purificación del Agua , Animales , Microalgas/efectos de los fármacos , Aguas Residuales/química , Antibacterianos/farmacología , Porcinos , Purificación del Agua/métodos , Reguladores del Crecimiento de las Plantas/farmacología , Contaminantes Químicos del Agua , Simbiosis/efectos de los fármacos , Biodegradación Ambiental , Fotosíntesis/efectos de los fármacos , Chlorella/efectos de los fármacos
15.
Bioresour Technol ; 400: 130697, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38614145

RESUMEN

Effects of a phosphorus-solubilizing bacteria (PSB) Bacillus megatherium on growth and lipid production of Chlorella sorokiniana were investigated in synthesized swine wastewater with dissolved inorganic phosphorus (DIP), insoluble inorganic phosphorus (IIP), and organic phosphorus (OP). The results showed that the PSB significantly promoted the algal growth in OP and IIP, by 1.10 and 1.78-fold, respectively. The algal lipid accumulation was also greatly triggered, respectively by 4.39, 1.68, and 1.38-fold in DIP, IIP, and OP. Moreover, compared with DIP, OP improved the oxidation stability of algal lipid by increasing the proportion of saturated fatty acids (43.8 % vs 27.9 %), while the PSB tended to adjust it to moderate ranges (30.2-41.6 %). Further, the transcriptome analysis verified the OP and/or PSB-induced up-regulated genes involving photosynthesis, lipid metabolism, signal transduction, etc. This study provided novel insights to enhance microalgae-based nutrient removal combined with biofuel production in practical wastewater, especially with complex forms of phosphorus.


Asunto(s)
Chlorella , Lípidos , Fosfatos , Aguas Residuales , Aguas Residuales/microbiología , Animales , Chlorella/metabolismo , Chlorella/crecimiento & desarrollo , Porcinos , Fosfatos/metabolismo , Lípidos/biosíntesis , Fósforo/metabolismo , Metabolismo de los Lípidos , Solubilidad , Bacillus/metabolismo
16.
J Environ Manage ; 355: 120441, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38430879

RESUMEN

Microalgae possess the prospective to be efficiently involved in bioremediation and biodiesel generation. However, conditions of stress often restrict their growth and diminish different metabolic processes. The current study evaluates the potential of GABA to improve the growth of the microalga Chlorella sorokiniana under Cr (III) stress through the exogenous administration of GABA. The research also investigates the concurrent impact of GABA and Cr (III) stress on various metabolic and biochemical pathways of the microalgae. In addition to the control, cultures treated with Cr (III), GABA, and both Cr (III) and GABA treated were assessed for accurately analysing the influence of GABA. The outcomes illustrated that GABA significantly promoted growth of the microalgae, resulting in higher biomass productivity (19.14 mg/L/day), lipid productivity (3.445 mg/L/day) and lipid content (18%) when compared with the cultures under Cr (III) treatment only. GABA also enhanced Chl a content (5.992 µg/ml) and percentage of protein (23.75%). FAMEs analysis by GC-MS and total lipid profile revealed that GABA treatment can boost the production of SFA and lower the level of PUFA, a distribution ideal for improving biodiesel quality. ICP-MS analysis revealed that GABA supplementation could extend Cr (III) mitigation level up to 97.7%, suggesting a potential strategy for bioremediation. This novel study demonstrates the merits of incorporating GABA in C. sorokiniana cultures under Cr (III) stress, in terms of its potential in bioremediation and biodiesel production without disrupting the pathways of photosynthesis and protein production.


Asunto(s)
Chlorella , Microalgas , Biocombustibles , Estudios Prospectivos , Proteínas/metabolismo , Microalgas/metabolismo , Biomasa , Lípidos , Suplementos Dietéticos , Ácido gamma-Aminobutírico/metabolismo
17.
Sci Total Environ ; 923: 171315, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38431177

RESUMEN

Development of microalgal-bacterial granular sludge (MBGS) from saline-adapted microalgae is a promising approach for efficient mariculture wastewater treatment, whereas the elusive mechanisms governing granulation have impeded its widespread adoption. In this study, spherical and regular MBGS were successfully developed from mixed culture of pure Spirulina platensis and Chlorella sp. GY-H4 at 10 mg/L Fe2+ concentration. The addition of Fe2+ was proven to induce the formation of Fe-precipitates which served as nucleation sites for microbial attachment and granulation initiation. Additionally, Fe2+ increased the prevalence of exopolysaccharide-producing cyanobacteria, i.e. Synechocystis and Leptolyngbya, facilitating microbial cell adhesion. Furthermore, it stimulated the secretion of extracellular proteins (particularly tryptophan and aromatic proteins), which acted as structural backbone for the development of spherical granule form microalgal flocs. Lastly, it fostered the accumulation of exogenous heterotrophic functional genera, resulting in the efficient removal of DOC (98 %), PO43--P (98 %) and NH4+-N (87 %). Nevertheless, inadequate Fe2+ hindered microalgal floc transformation into granules, excessive Fe2+ expanded the anaerobic zone within the granules, almost halved protein content in the TB-EPS, and inhibited the functional genes expression, ultimately leading to an irregular granular morphology and diminished nutrient removal. This research provides valuable insights into the mechanisms by which Fe2+ promotes the granulation of salt-tolerant microalgae, offering guidance for the establishment and stable operation of MBGS systems in mariculture wastewater treatment.


Asunto(s)
Chlorella , Microalgas , Purificación del Agua , Aguas Residuales , Microalgas/metabolismo , Aguas del Alcantarillado/química , Proteínas/metabolismo , Bacterias , Purificación del Agua/métodos , Hierro/metabolismo , Biomasa , Nitrógeno/metabolismo
18.
World J Microbiol Biotechnol ; 40(5): 151, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38553582

RESUMEN

The ubiquity of hexavalent chromium (Cr(VI)) from industrial activities poses a critical environmental threat due to its persistence, toxicity and mutagenic potential. Traditional physico-chemical methods for its removal often entail significant environmental drawbacks. Recent advancements in remediation strategies have emphasized nano and bioremediation techniques as promising avenues for cost-effective and efficient Cr(VI) mitigation. Bioremediation harnesses the capabilities of biological agents like microorganisms, and algae to mitigate heavy metal contamination, while nano-remediation employs nanoparticles for adsorption purposes. Various microorganisms, including E. coli, Byssochlamys sp., Pannonibacter phragmitetus, Bacillus, Aspergillus, Trichoderma, Fusarium, and Chlorella utilize bioreduction, biotransformation, biosorption and bioaccumulation mechanisms to convert Cr(VI) to Cr(III). Their adaptability to different environments and integration with nanomaterials enhance microbial activity, offering eco-friendly solutions. The study provides a brief overview of metabolic pathways involved in Cr(VI) bioreduction facilitated by diverse microbial species. Nitroreductase and chromate reductase enzymes play key roles in nitrogen and chromium removal, with nitroreductase requiring nitrate and NADPH/NADH, while the chromium reductase pathway relies solely on NADPH/NADH. This review investigates the various anthropogenic activities contributing to Cr(VI) emissions and evaluates the efficacy of conventional, nano-remediation, and bioremediation approaches in curbing Cr(VI) concentrations. Additionally, it scrutinizes the mechanisms underlying nano-remediation techniques for a deeper understanding of the remediation process. It identifies research gaps and offers insights into future directions aimed at enhancing the real-time applicability of bioremediation methods for mitigating with Cr(VI) pollution and pave the way for sustainable remediation solutions.


Asunto(s)
Chlorella , Escherichia coli , Escherichia coli/metabolismo , Chlorella/metabolismo , NAD , NADP , Cromo/toxicidad , Biodegradación Ambiental , Nitrorreductasas
19.
Nano Lett ; 24(12): 3801-3810, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38477714

RESUMEN

The effectiveness of various cancer therapies for solid tumors is substantially limited by the highly hypoxic tumor microenvironment (TME). Here, a microalgae-integrated living hydrogel (ACG gel) is developed to concurrently enhance hypoxia-constrained tumor starvation therapy and immunotherapy. The ACG gel is formed in situ following intratumoral injection of a biohybrid fluid composed of alginate, Chlorella sorokiniana, and glucose oxidase, facilitated by the crossing-linking between divalent ions within tumors and alginate. The microalgae Chlorella sorokiniana embedded in ACG gel generate abundant oxygen through photosynthesis, enhancing glucose oxidase-catalyzed glucose consumption and shifting the TME from immunosuppressive to immunopermissive status, thus reducing the tumor cell energy supply and boosting antitumor immunity. In murine 4T1 tumor models, the ACG gel significantly suppresses tumor growth and effectively prevents postoperative tumor recurrence. This study, leveraging microalgae as natural oxygenerators, provides a versatile and universal strategy for the development of oxygen-dependent tumor therapies.


Asunto(s)
Chlorella , Microalgas , Neoplasias , Animales , Ratones , Hidrogeles , Glucosa Oxidasa , Fotosíntesis , Hipoxia , Oxígeno , Inmunoterapia , Alginatos , Microambiente Tumoral
20.
Genes (Basel) ; 15(3)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38540424

RESUMEN

Fatty acid desaturases (Fads), as key enzymes in the biosynthesis of long-chain polyunsaturated fatty acids (LC-PUFAs), catalyze the desaturation between defined carbons of fatty acyl chains and control the degree of unsaturation of fatty acids. In the present study, two Fads genes, designated MulFadsA and MulFadsB, were identified from the genome of the dwarf surf clam Mulinia lateralis (Mollusca, Mactridae), and their spatiotemporal expression was examined. MulFadsA and MulFadsB contained the corresponding conserved functional domains and clustered closely with their respective orthologs from other mollusks. Both genes were expressed in the developmental stages and all tested adult tissues of M. lateralis, with MulFadsA exhibiting significantly higher expression levels in adult tissues than MulFadsB. Subsequently, the effects of dietary microalgae on Fads expressions in the dwarf surf clam were investigated by feeding clams with two types of unialgal diets varying in fatty acid content, i.e., Chlorella pyrenoidosa (Cp) and Platymonas helgolandica (Ph). The results show that the expressions of MulFads were significantly upregulated among adult tissues in the Cp group compared with those in the Ph group. In addition, we observed the desaturation activity of MulFadsA via heterologous expression in yeasts, revealing Δ5 desaturation activity toward PUFA substrates. Taken together, these results provide a novel perspective on M. lateralis LC-PUFA biosynthesis, expanding our understanding of fatty acid synthesis in marine mollusks.


Asunto(s)
Bivalvos , Chlorella , Animales , Ácido Graso Desaturasas/genética , Ácidos Grasos Insaturados/genética , Ácidos Grasos Insaturados/metabolismo , Chlorella/metabolismo , Bivalvos/genética , Bivalvos/metabolismo , Ácidos Grasos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA